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Electrochemistry at chemically modified surfaces has been used
extensively to examine charge transport (CT) through different
media, including straight-chain hydrocarbons, conjugated organic
“wires”, surfactant films, and proteins.1-4 We have reported the
self-assembly of 15-20 base-pair duplex DNA sequences onto gold
surfaces through covalently attached thiol tethers and have exploited
the unique characteristics of CT through these assemblies to develop
electrochemical assays for DNA intercalation,5 mutational analysis,6

lesions,7 and DNA/protein interactions.8

As with DNA CT in solution,9 DNA films exhibit highly efficient
CT over long distances with a remarkable sensitivity to intervening
mismatches and lesions.10 To control precisely the location of
intercalating probes, daunomycin (DM) may be site-specifically
coupled to the thiol-modified DNA before self-assembly.11 We
previously used this technique to probe the distance dependence
of CT by preparing a series of films in which the through-helix
DM/gold separations spanned more than 45 Å.10 Strikingly, the
electrochemical response of the intercalated DM did not vary
regardless of the DM position along the helix. Given the very
shallow distance dependence seen with DNA CT studies in
solution,9 as well as our finding that a single intervening base
mismatch caused a complete loss of the electrochemical response,12

we proposed that tunneling through the (much shorter)σ-bonded
tether constitutes the rate-limiting step. To test this hypothesis
directly, we have now constructed a homologous series of DM-
labeled assemblies featuring thiol-terminated tethers that possess
different numbers (n) of methylene units (Figure 1).

DNA sequences (SH-tether-5′-ATCCTCAATCATGGAC-3′ plus
complement, where the boldGG indicates the DM binding site)
were synthesized by solid-phase methods. Changing the length of
the diaminoalkane used in the coupling step allowed the synthesis
of a series of tethers withn ranging from 4 to 9. After hybridiza-
tion, the DNA conjugates were covalently labeled with DM by
coupling with formaldehyde.11,13 The resulting DNA-DM conju-
gates were then self-assembled on a clean gold electrode with excess
Mg2+ to achieve a dense monolayer.

Extensive physical characterization of DNA monolayers em-
ployed for electrochemical measurements is crucial to the proper
evaluation of experimental results. In these films, the ratio of DM:
DNA determined spectrophotometrically typically varies between
0.85 and 0.95,14 and the surface coverage of DNA-DM ranges
from 30 to 45 pmol/cm2. These latter measurements are determined
both by ruthenium hexammine assay15 and by integrating the
adsorbed DM cyclic voltammetric response.16 The densities and
stoichiometries are consistent with earlier electrochemical-AFM
experiments that showed densely packed DNA; in these films, the
DNA duplexes adopt an upright orientation along the surface normal
at the applied potentials used in the study, due to electrostatic
repulsion of the DNA polyanion.18

Irrespective of tether length, the DNA films exhibit a chemically
reversible reduction ca.-604 mV versus AgCl/Ag 1 M KCl (Figure
2). However, the CV response clearly varies with the number of
intervening methylene groups in the DNA tether at scan rates (ν)
above∼1 V/s. As previously,10 no variations are apparent upon
changing the DM intercalation site along the helix (Figure 2, inset).
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Figure 1. Schematic representation of the DNA-DM modified electrode.
Theσ-bonded tether is in blue, wheren denotes the number of intervening
methylene units (4e n e 9); DM is in orange. The relative depth of the
DNA versus linker region is>3:1 on the basis of AFM investigations.

Figure 2. Normalized, background-corrected CVs of DNA-DM mono-
layers atν ) 1 V/s for tethers withn ) 4, 6, 7, 8, 9 measured in 5 mM
phosphate, 50 mM NaCl, pH 7.5, on a Au electrode (∼0.025 cm2). Inset:
normalized CVs (ν ) 1 V/s) of DNA-DM films with identical tethers
(n ) 6) but different DM sites: 5′-ATCCTGGATCATCAAC-3′ (blue) and
5′-ATCCTCAATCATGGAC-3′ (red).
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Plots of the cathodic and anodic peak splitting (∆Epc and ∆Epa)
were analyzed as a function of scan rate according to Laviron’s
model19 to yield standard electron-transfer rate constants,ks

(∆G° ) 0), as a function ofn (see Supporting Information).
On the basis of these data, values forks increase exponentially

with decreasingn (Figure 3), consistent with predictions from simple
superexchange coupling theory (eq 1), yielding an apparent value
for ân of 1.0 per-CH2- unit.

This value is nearly identical to those previously measured for
tunneling through an alkylthiol bridge to bound ferrocene (â ∼
1.1 per CH2),1,20 as well as to cytochromec (â ) 1.0-1.1 per
CH2)4b,c and azurin (â ∼ 1.0 per CH2).4d Assigning aâ value of
1.0 per bond for the additional eightσ-bonds of the linker that are
not included in the methylene chain leads to an extrapolated, zero
linker-length rate (ko) of ∼108-109 s-1. This value, a lower limit
for ET through the DNA-DM conjugate, is comparable to those
found using small-molecule redox probes bound directly to the
surface,21 yet here the redox probe appears to be the full∼60 Å
long DM-DNA conjugate.

Even though changes in redox probe position within DNA yield
no detectable change in ET rate,22 the variation of rate with distance
spanned by the tether is well-behaved. Indeed, on the time scale of
CV experiments, the DNA-DM conjugate behaves as a discrete
redox-active entity, with an electrochemical response that is
independent of the DM intercalation site. This behavior is remi-
niscent of that seen in STM studies on DNA films where efficient
coupling of the tip to the gold surface through the DNA assembly
is evident.24 Here, irrespective of the mechanism for CT through
the DNA assembly, CT through theσ-bonded tether follows
semiclassical superexchange theory. When both the tether and the
DM position are varied, it is clear that CT through theσ-bonds
versusπ-stack differs significantly, and it is CT through theσ-bonds
that limits the rates in DNA films.
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Figure 3. Plot of ln(ks) versus number of methylene units (n) obtained for
different tether lengths.

ks(n) ) kn)0 exp(-ânn) (1)
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